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                              17.Decision Tree Induction 

17.1 Introduction 

 

        The basic algorithm for decision tree induction is a greedy algorithm that 

constructs decision trees in a top-down recursive divide-and-conquer manner. The basicstrategy is as 

follows. 

 

     The tree starts as a single node representing the training samples(step 1). If the 

samples are all of the same class, then the node becomes a leaf and is labeled with that class (steps 2 

and 3). Otherwise, the algorithm uses an entropy-based measure known as information gain as a 

heuristic for selecting the attribute that will best separate the samples into individual classes (step 6). 

This attribute becomes the “test” or “decision”  attribute at the node (step 7). In this version of the 

algorithm, all attributes are  categorical, that is, discrete-valued. Continuous-valued attributes must be 

discretized. 

  A branch is created for each known value of the test attribute, and the samples are 

partitioned accordingly(steps 8-10).  

  The algorithm uses the same process recursively to form a decision tree for the 

 samples at each partition. Once an attribute has occurred at a node, it need not be 

considered in any of the node’s descendents. 

 

The recursive partitioning stops only when any one of the following conditions is 

true; 

(a) All samples for a given node belong to the same class (steps 2 and steps 3), or 



 

(b)There are no remaining attributes on which the samples may be further partitioned 

     (step 4). In this case, majority voting is employed (step 5). This involves 

converting the given node into a leaf and labeling it with the class in majority 

among samples. Alternatively, the class distribution of the node samples may be 

stored. 

 

(c ) There are no samples for the branch test-attribute=a; (step 11). In this case, a leaf 

is created with the majority class in samples(step 12). 

 

17.2  Attribute selection measure   

 

        The information gain measure is used to select the test attribute at each node in 

the tree. Such a measure is referred to as attribute selection measure or a measure of 

the goodness of fit. The attribute with the highest information gain (or greatest entropy 

reduction) is chosen as the test attribute for the current node. This attribute minimizes 

the information needed to classify the samples in the resulting partitions and reflects the 

least randomness or “impurity” in these partitions. Such an information-theoritic  

approach minimizes the expected number of tests  needed to classify an object and 

guarantees that a simple (but not necessarily the simplest) tree is found. 

 

        Let S be a set consisting of data samples. Suppose the class label attribute has m 



distinct values defining m distinct classes , Ci  . The expected information needed to classify a given 

sample is 

given by 

 

                         I(S1,S 2……….S m)= ∑P i log(P i) 

 

Where Pi is the probability that an arbitrary sample belongs to class C, and is estimated 

By S i/S. Note that a log function to the base 2 is used since the information is encoded in 

bits. 

 

      Let attribute A have v distinct values, (a 1, a2 …….a. v). Attribute A can be used to  

partition S into v subsets, (S1, S2,….Sv), where Sj contains those samples. 

Classification by that have value a j , of A. If A were selected as the test attribute(i.e., 

the best attribute for splitting), then these subsets would correspond to the branches 

grown from the node containing the set S. Let S j  be the number of samples of class C, in 

 

a subset S j . The entropy, or expected information based on the partitioning into subsets 

by A, is given by 

 

                        E (A)=∑ (S ij + S mj /S)I(S ij,…..,Smj) 

 

The encoding information that would be gained by branching on A is 



 

                       Gain (A)=I(S 1,S2,…..S m)- E(A) 

 

In other words, Gain (A) is the expected reduction in entropy caused by knowing 

the value of attribute A. 

 

The algorithm computes the information gain of each attribute. The attribute with 

the highest information gain is chosen as the test attribute for this given set S. A node is 

created and labeled with the attribute, branches are created for each value of the 

attribute, and the samples are partitioned accordingly. 

 

  In summary, decision tree induction algorithms have been used for classification in 

a wide range of application domains. Such systems do not use domain knowledge. The 

learning and classification steps of decision tree induction are generally fast. 

 

17.3 Tree Pruning 

 

       When a decision tree is built, many of the branches will reflect anomalies in the 

training data due to noise or outliers. Tree pruning methods address this problem of 

over fitting the data. Such methods typically use statistical measures to remove the least 

reliable branches, generally resulting in faster classification and an improvement in the 



ability of the tree to correctly classify independent test data. 

 

       There are two common approaches to tree pruning. In the pre-pruning approach, a 

tree is “pruned” by halting its construction early (e.g., by deciding not to further split or 

partition the subset of training samples at a given node). Upon halting,the node 

becomes a leaf. The leaf may hold the most frequent class among the subset samples or 

the probability distribution of those examples. 

 

     When constructing a tree, measures such as statistical significance, information 

gain, and so on, can be used to assess the goodness of a split. If partitioning the samples 

at a node would result in a split that falls below a pre-specified threshold, then further 

partitioning of the given subset is halted. There are difficulties, however, in choosing an 

appropriate threshold. High thresholds could result in oversimplified trees, while low 

thresholds could result in very little simplification 

 

            The second approach, post-pruning, removes branches from a “fully grown” tree, 

a tree node is pruned by removing its branches. The cost complexity-pruning algorithm 

is an example of the post pruning approach. The lowest un-pruned node becomes a leaf 

and is labeled by the most frequent class among its former branches. For each non-leaf 

node in the tree, the algorithm calculates the expected error rate that would occur if the 

sub-tree at that node were pruned . Next, the expected error rate occurring if the node 

were not pruned is calculated using the error rates for each branch. If pruning the 



node leads to a greater expected error rate, then the sub-tree is kept. Otherwise, it is 

pruned. After generating a set of progressively pruned trees, an independent test set is 

used to estimate the accuracy of each tree. The decision tree that minimizes the 

expected error rate is preferred. 

 

         Rather than pruning trees based on expected error rates, we can prune trees based 

on the number of bits required to encode them. The “best pruned tree” is the one that 

minimizes the number of encoding bits. This method adopts the Minimum Description 

length(MDL)principle, which follows the notion that the simplest solution is 

preferred. Unlike cost complexity pruning, it does not require an independent set of 

samples. Alternatively, pre-pruning and post-pruning may be interleaved for a combined 

approach. Post-pruning requires more computation than pre-pruning, yet generally leads 

to a more reliable tree. 

 

17.4 Extracting Classification Rules from Decision Trees 

 

“ Can I get classification rules out of my decision tree? If so,  how?” The 

knowledge represented in decision trees can be extracted and represented in the form of 

classification IF-THEN rules. One rule is created for each path from the root to a leaf 

node. Each attribute-value pair along a given path forms a conjunction in the rule 

antecedent (“IF” part). The leaf node holds the class prediction, forming the rule 



consequent (“THEN” part). The IF-THEN rules may be easier for humans to  

understand, particularly if the given tree is very large. 

 

         The rules extracted are C4.5, a later version of ID3 algorithm, uses the training 

samples to estimate the accuracy of each rule . Since this would result in an optimistic 

estimate of rule accuracy, C4.5 employs a pessimistic estimate . to compensate for the 

bias, Alternatively, a set of test samples independent from the training set can be used to 

estimate rule accuracy. 

        A rule can be “pruned” by removing any conditioning in its antecedent that does not 

improve the estimated accuracy of the rule. For each class, rules within a class may then 

be ranked according to their estimated accuracy. Since it is possible that a given test 

sample will not satisfy any rule antecedent, a default rule assigning the majority class is 

typically added to the resulting rule set. 

 

17.5 Bayesian Classification 

 

       Bayesian classifiers are statistical classifiers. They can predict class membership 

probabilities, such as the probability that a given sample belongs to a particular class. 

 

        Bayesian classification is based on Bayes Theorem, described below. Studies 

comparing classification algorithms have found a simple Bayesian classifier known as 

the naïve Bayesian classifier to be comparable in performance with decision tree and 



neural network classifiers. Bayesian classifiers have also exhibited high accuracy and 

 speed when applied to large databases. 

 

        Naïve Bayesian classifiers assume that the effect of an attribute value on a given 

class is independent of the values of the other attributes. This assumption is called class 

conditional independence . It is made to simplify the computations involved and , in this 

sense, is considered “naïve”. Bayesian belief networks are graphical models, which 

unlike naïve Bayesian classifiers, allow the representation of dependencies among 

subsets of attributes. Bayesian belief networks can also be used for classification. 

 

          The section below reviews basic probability notation and Bayes theorem. You will 

then learn naïve Bayesian classification later. Bayesian belief networks are described 

after that. 

 

17.6 Bayes Theorem 

 

         Let X be a data sample whose class label is unknown. Let H be some hypothesis, 

such as that the data simple X belongs to a specified class C. For classification 

problems, we want to determine P(H/X), the probability that the hypothesis H holds 

given the observed data sample X. 

 

        P(H/X) is the posterior probability, or a posteriori probability, of H conditioned on 



X. For example, suppose the world of data samples consists of fruits, described by their 

color and shape. Suppose that X is red and round, and that H is the hypothesis that X is an apple. Then 

P(H/X) reflects our confidence that X is an apple given that we have seen that X is red and round. In 

contrast, P(H) is the prior probability, or a priori, probability, of H. For our example, this is the probability 

that any given data sample is An apple, regardless of how the data sample looks. The posterior 

probability, P(H/X), is based on more information (such as background knowledge)than the prior 

probability, P(H), which is independent of X 

   

        Similarly, P(X/H) is the posterior probability of X conditioned on H. That is ,it is 

the probability that X is red and round given that we know that it is true X is an  

apple. P(X) is the prior probability of X. Using for example, it is the probability that a 

data sample from our set of fruits is red and round. 

 

         “How are these probabilities estimated ?” P(X), P(H), and P(X/H)may be estimated 

from the given data, as we shall see below. Bayes theorem is useful in that it provides a 

way of calculating the posterior probability, P(H/X), from P(H), P(X), and P(X/H). 

Bayes theorem is  

                                   P(H/X)=(P(X/H)P(H))/P(X) 

 

In the next section, you will learn how Bayes theorem is used in the naïve 

Bayesian classifier. 

 

17.7 Naïve Bayesian Classification  



 

         The naïve Bayesian classifier, or simple Bayesian classifier, works as follows: 

 

1)Each data sample is represented by an n-dimensional feature vector, X==x1,x2,…..xn, depicting n 

measurements made on the sample from n attributes, respectively, A1,A2,….An 

 

2)Suppose that there are m classes, C1,C2,…..Cm. Given an unknown data sample, 

X(i.e., having no class label), the classifier will predict that X belongs to the class 

having the highest posterior probability, conditioned on X. That is , the naïve 

Bayesian classifier assigns an unknown sample X to the class Ci, if and only if we 

maximize P(Ci/X). The class C, for which P(Ci/X) is maximized is called the  

maximum posteriori hypothesis. 

 

3) As P(X) is constant for all classes, only P(X/Cj)/P(Cj) need be maximized. If the 

class prior probabilities are not known, then it is commonly assumed that the 

classes are equally likely, that is, P(C1)==P(C2)==…=P(Cn), and we would 

therefore maximize P(X/C,). Otherwise, we maximize P(X/Ci )P(Ci). Note that the 

class prior probabilities may be estimated by P(Ci)==si/s is the number of  

training samples. 

 

17.8 Bayesian Belief Networks 

 



      The naïve Bayesian classifier makes the assumption of class conditional 

independence, that is , given the class label of a sample, the values of the attributes are 

conditionally independent of the other. This assumption simplifies computation. When 

the assumption holds true, then the naïve Bayesian Classifier is the most accurate in 

comparison with all other classifiers. In practice, however, dependencies can exist 

between variables. Bayesian belief networks specify joint, conditional probability 

distributions. They allow class conditional independencies to be defined between 

subsets of variables. They provide a graphical model of causal relationships, on which 

learning can be performed. These networks are also known as belief networks, Bayesian 

networks, and probabilistic networks. For brevity, we will refer to them as belief 

networks. 

 

          A belief network is defined by two components. The first is a directed acyclic 

graph, where each node represents a random variable and each arc represents a 

probabilistic dependence. If an arc is drawn from a node Y to a node Z, then Y is a; 

parent or immediate predecessor of Z, and Z is a descendent of Y. Each variable is 

conditionally independent of its non-descendents in the graph, given its parents. The 

variables may be discrete or continuous-valued. They may correspond to actual 

attributes given in the data or to “hidden variables” believed to form a relationship 

(such as medical syndromes in the case of medical data). 

 



17.9 Review Questions 

 

.1 Explian about Attribute selection measure   

 

2. Explain about  Tree Pruning 

 

3 how can we  Extracting Classification Rules from Decision Trees 

 

4 Expalin about  Bayesian Classification 

 

5 Explian about  Bayes Theorem 
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