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                            20.Cluster Analysis 

20.1 Introduction 

             Imagine that you are given a set of data objects for analysis where, unlike in classification, the 

class label of each object is not known. Clustering is the process of grouping the data into classes or 

clusters so that objects within a cluster have high similarity in comparison to one another, but are very 

dissimilar to objects in other clusters. Dissimilarities are assessed based on the attribute values 

describing the objects. Often, distance measures are used. Clustering has its roots in many areas, 

including data mining, statistics, biology, and machine learning. 

 Here you will learn the requirements of clustering methods for operating on large amounts of data. 

You will also study how to compute dissimilarities between objects represented by various attribute or 

variable types. You will study several clustering techniques, organized into the following categories: 

partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-

based methods. Clustering can also be used for outlier detection. 

 20.2  What Is Cluster Analysis? 

 The process of grouping a set of physical or abstract objects into classes of similar objects is called 

clustering. A cluster is a collection of data objects that are similar to one another within the same 

cluster and are dissimilar to the objects in other clusters. A cluster of data objects can be treated 

collectively as one group in many applications. Cluster analysis is an important human activity. Early in 

childhood, one learns how to distinguish between cats and dogs, or between animals and plants, by 

continuously improving subconscious clustering schemes. Cluster analysis has been widely used in 

numerous applications, including pattern recognition, data analysis, image processing, and market 

research. By clustering, one can identify dense and sparse regions and, therefore, discover overall 

distribution patterns and interesting correlation among data attributes. 

 In business, clustering can help marketers discover distinct groups in their customer bases and 

characterize customer groups based on purchasing patterns. In biology, it can be used to derive plant 

and animal taxonomies, categorize genes with similar functionality, and gain insight into strictures 

inherent in populations. Clustering may also help in the identification of areas of similar land use in an 



earth observation database, and in the identification of groups of automobile insurance policy holders 

with a high average claim cost, as well as the identification of groups of houses in a city according to 

house type, value, and geographical location. It can also be used to help classify documents on the web 

for information discovery. As a data’ mining function, cluster analysis can be used as a stand-alone tool 

to gain insight I into the distribution of data, to observe the characteristics of each cluster, and to focus 

on a particular set of clusters for further analysis. Alternatively, it may serve as a preprocessing step for 

other algorithms, such as characterization and classification, which would then operate on the detected 

clusters. Data clustering is under vigorous development. Contributing areas of research include data 

mining, statics, machine learning, spatial database technology, biology, and marketing. Owing to the 

huge amounts of data collected in databases, cluster analysis has recently become a highly active topic 

in data mining research. 

 As a branch of statistics, cluster analysis has been studied extensively for many years, focusing mainly 

on distance- based cluster analysis. Cluster analysis tools based on k-means, k-medoids, and several 

other methods have also been built in to many statistical analysis software packages or systems, such 

as S-plus, SPSS, and SAS. In machine learning, clustering is an example of unsupervised learning. Unlike 

classification, clustering and unsupervised learning do not rely on predefine classes and class-labeled 

training examples. For this reason, clustering is a form of learning by observation, rather than learning 

by examples. In conceptual clustering, a group of objects forms a class only if it is describable by a 

concept. This differs from conventional clustering, which measures similarity based on geometric 

distance. Conceptual clustering consists of two components: (1) it discovers the appropriate classes, 

and (2) it forms descriptions for each class, as in classification. The guideline of striving for high intra 

class similarity and low inter class similarity still applies. 

 In data mining, efforts have focused on finding methods for efficient BE effective cluster analysis in 

large databases. Active themes of research focus the scalability of clustering methods, the effectiveness 

of methods for clustering complex shapes and types of data, high-dimensional clustering techniques 

and methods for clustering mixed numerical and categorical data in large databases. 

 

20.3 Typical requirements  

 Clustering is a challenging field of research where its potential applications pose their own special 

requirements. The following are typical requirements clustering in data mining: 



Scalability: many clustering algorithms work well on small data sets containing fewer than 200 data 

objects; however, a large database may contain millions of objects. Clustering on a sample of a given 

large data set may lead to biased results. Highly scalable clustering algorithms are needed. 

Ability to deal with different types of attributes: many algorithms are designed to cluster interval-

based (numerical) data. However, applications may require clustering other types of data, such as 

binary, categorical (nominal), and ordinal data, or mixtures of these data types. 

Discovery of clusters with arbitrary shape: many clustering algorithms based on such distance 

measures tend to find spherical clusters with similar size and density. However, a cluster could be of 

any shape. It is important to develop algorithms that can detect clusters of arbitrary shape. 

Minimal requirements for domain knowledge to determine knowledge to determine input 

parameters: many clustering algorithms require users to input certain parameters in cluster analysis 

(such as the number of desired clusters). The clustering results can be quite sensitive to input 

parameters. Parameters are often hard to determine, especially for data sets containing high 

dimensional objects. This not only burdens users,but also makes the quality of clustering difficult to 

control. 

 

Ability to deal with noisy data: Most real-world databases contain outliers or missing,unknown,or 

erroneous data. Some clustering algorithms are sensitive to such data and may lead to clusters of poor 

quality. 

 

Insensitive to the order of input records: Some clustering algorithms are sensitive to the order of input 

data; for example the same set of data,when presented with different orderings to such an 

algorithm,may generate dramatically different clusters.It is important to develop alorithms that are 

insensitive to the order of input. 

  

High dimensionality: A database or a data warehouse can contain several dimensions or 

attributes.Many clustering algorithms are good at handling low-dimensional data,involving only two to 

three dimensions.Human eyes are good at judging the quality of clustering for up to three dimensions. It 



is challenging to cluster data objects in high dimensional space, especially considering that such data can 

be very sparse and highly skewed. 

 

Constraint-based clustering: Real-world applications may need to perform clustering under various 

kinds of consraints. Suppose that your job is to choose the locations for a given number of new 

automatic cash-dispensing machines(i.e.,ATMs) in a city.To decide upon this , you may cluster 

households while considering constraints such as the city's rivers and highway networks, and customer 

requirements per region. A  challenging task is to find groups of data with good clustering behavior that 

satisfy specified consraints. 

 

Interpretability and usability: Users expect clustering results to be interpretable, comprehensible,and 

sable. That is ,clustering may need to be tied up with specific semantic interpretations and applications. 

It is important to study how an application goal may influence the selection of clustering methods. 

 

With these requirements in mind,our study of cluster analysis proceeds as follows.First,we study 

different types of data and how they can influence clustering methods.Second ,we present a general 

categorization of clustering methods.We then study each clustering method in detail, including 

partitioning methods, hierarchical methods,density-based methods,grid-based methods, and model-

based methods. We also examine clustering in high-dimensional space and outlier analysis. 

 

20.4 Types of Data in cluster Analysis 

 

    In this section,we study the types of data that often occur in cluster analysis and how to preprocess 

them for such an analysis.suppose that a data set to be clustered contains n objects, which may 

represent persons,houses ,documents, countries,and so on. Main memory-based clustering algorithms 

typecally operate on either of the following two data structures. 

 



 Data matrix(or object-by-variable structure): This represents n objects,such as persons,with p 

variables(also called measurements or attributes), such as age ,height,weight,gender,race,and so on.The 

structure is in the form of a relational table,or n-by-p  matrix(nobjects x p variables). 

 

--                             ---              

|  X11……………X1M   | 

|  X21…………….X2M  | 

|   :                             | 

|   :                             |   

|  XN1……………XNM  | 

--                            ---      

Dissimilarity matrix( or object-by-object structure): This stores a collection of proximities that are 

available for all pairs of n objects. It is often represented  by an n-by-n table: 

 

 

 

 

 

--                             ---              

|  0                              | 

| d(2,1)  0                    | 

|   :                             | 

|   :                             |   



| d(n,1)  d(n,2) ……0  | 

--                            ---      

 

where d(i,j) is the measured difference or dissimilarity between objects i and j. In general , d(i,j) is a 

nonnegative number that is close to 0 when objects i and j are highly similar or "near" each other, and 

becomes larger the more they differ. Since d(i,j)===d(j,0),and d(i,i)=0. 

    

The data matrix is often called a two-mode matrix, whereas the dissimilarity matrix is called a one-mode 

matrix, since the rows and columns of the former represent different entities,while those of the latter 

represent the same entity. Many clustering algorithms operate on a dissimilarity matrix.If the data are 

pre-sented in the form of a data matrix, it can first be transformed into a dissimilarity matrix before 

applying such clustering algorithms. 

 

  "How can -dissimilarity, d(i,j) be assessed?" you may wonder. In this section ,We discuss how object 

dissimilarity can be computed for objects described by interval-scaled variables;by nominal,ordinal,and 

ratio-scaled variables; or combinations of these variable types. The dissimilarity data can later be used 

to compute clusters of objects. 

  

 20.5 Interval-scaled Variables  

   

         This section discusses interval-scaled variables and their standardization.It then describes distance 

measures that are commonly used for computing the dissimilarity of objects described by such variables. 

These measures include the Euclidean, Manhattan, and Minkowski distances. 

 

      Interval-scaled variables are continuous measurements of a roughly linear scale Typical examples 

include weight and height, latitude and longitude coordinates (e.g..., when clustering houses), and 



weather temperature. 

     

    The measurement unit used can affect the clustering analysis. For example, changing measurement 

unit used can affect the clustering analysis. For example, changing measurement units form meters to 

inches for height, or form kilograms to pounds for weight, may lead to a very different clustering 

structure.In general,expressing a variable  in smaller units will lead to a larger range for that variable , 

and thus a larger effect on the resulting clustering structure. To help avoid dependence on the choice of 

measurement units, the data should be standardized. standardizing measurements attempts to give all 

variables an equal weight.This is particularly useful when given no prior knowledge of the data. 

However, in some applications, users may intentionally want to give more weight  to a certain set of 

variables than to others.For example, when clustering basketball player candidates,we may prefer to 

give more weight to the variable height. 

 

                "How can the data for a variable be standardized?" To standardize measurements,one choice is 

to convert the original measurements to unitless variables. Given measurements f  for a variable,this can 

be performed as follows. 

 

 1.  calculate the mean absolute deviation ,sf. 

              

                                       Sf= (1\n)(|x1f -mf|+|x2f-mf|+.....+|xnf-mf|) 

 where x1f,.....,xnf are measurements of f, and mf is the mean value of f, that is  

 

                                          mf=i=1/n(x1f+s2f+....+xnf) 

 

 



2.calculate the standardized measurement,or z-score  

                                       

                                            zif=xif-mf/sf 

 

            The mean absolute deviation,sf is more robust to outliers than the standard deviation, of sf. 

When computing the mean absolute deviation, the deviation from the mean are not squared; hence, 

the effect of outliers i; somewhat reduced. There are more robust measures of despersion, such as the 

median absolute deviation. 

However, the advantage of using the mean absolute deviation is that the z-scores of outliers do not 

become too small ; hence, the outliers remain detectable. 

 

   Standardization may or may not be useful in a particular application. Thus the choice of whether and 

how to perform standardization should be left to the user. 

 

 "OK," you now ask, "once I have standardized the data , how can I compute the dissimilarity between 

objects?" After standardization, or without standardization, or without standardization in certain 

applications, the dissimilarity (or similarity) between the objects described by interval-scaled variables is 

typically computed based on the distance between each pair of objects.  The most popular distance 

measure is Euclidean distance, whih is defined as 

 

                 

              __________________________________  

D(I,j) = √|Xi1-Xj1|
2
+|Xi2-Xj2|

2
+…………|Xip-Xij|

2
 

 

Where  i = (X,1 X,2 …..X,p) and j = (Xj1, Xj2…..Xjp)                            



 

                                                Both the Euclidean distance and Manhattan distance satisfy the following 

'mathematic requirements of a distance function'; 

1.  d(i,j)>_0:   Distance is a nonnegative number, 

2.  d(i,j)==0:  The distance of an object to itself is 0. 

3. d(i,j)=d(j,i): Distance is a symmetric function. 

4. d(i,f)<d(i,h)+d(h,j): Going directly from object i to object j in space is no more than making a detour 

over any other object h(triangular in equalality). 

  

       Minkowski distance is a generqalization of oth Euclidean distance and Manhattan distance.It is 

defined as 

                             

                        d(i,j)=( |x1i-x1j|q+ |xi2-x2j|q+.............(|xip-xjp|q) 1/q 

Where q is a positive integer.It represents the Manhattan distance when q=1,and Euclidean distance 

when q==2. 

                            

                             Weighting can also be applied to the Manhattan and Minkowski distances. 

 

  20.6 Binary Variables  

                      

                 This section describes how to compute the dissimilarity between objuces described by either 

symmeric or asymmetric binary variables. 

 



  A binary variable has only two states:0 or 1, where 0 means that the variable is absent,and 1 means 

that it is present. Given the variable smoker , describing a patient,for instance,1 indicates that the 

patient  smokes, while 0 indicates  that the patient does not . Treating binary variables as if they are 

interval-scaled can lead to misleading clustering results. Therefore, methods specific to binary data are 

necessary for computing dissimilariteis. 

 

  20.7 Nominal,Ordinal, and ratio-scaled Variables 

                       

                      This section discusses how to compute the dissimilarity between objects described  by 

nominal, ordinal, and ratio- scaled variables. 

 

   Nominal Variables            

   

                       A nominal variable is a generalization of  the binary variable in that it can take on more than 

two states. For example , map color is a nominal variable that may have ,say,five 

states:red,yellow,green,pink,and blue. 

 

 Let the number of states of a nominal variable be M.The states can be denoted by letters, symbols,or a 

set of integers, such as 1,2,,..,M. Notice that such integers are used just for data handling and do not 

represent any specific ordering. 

 

"How is dissimilarity computed between objects described by nominal variables?" 

The dissimilarity computed between objects described by nominal variables?"  The dissimilarity between 

two objects i and j can be computed using the simple matching approach: 

      



                                    d(i,j)=p-m/p 

   

      where m is the number of matches(i.e., the number of variables for which;'and j are in the same 

state), and p is the total number of variables, Weights can be assigned to increase the effect of m or to 

assign greater weight to the matches in variables having a large number of states. 

 

            Nominal variables can be encoded by asymmetric  binary variables by creating a  new binary 

variable for each of the M nominal states. For an object with a given state value, the binary variable 

representing that state is set to 1, while the remaining binary variables are set to 0. For  example to 

encode the nominal variable map_color, a binary variable can be created for each of the five colors 

listed above. For an object having the color yellow, the yellow variable is set to 1, While the remaining 

four variables are set to 0. 

 

  20.8 Ordinal variables           

  

                 A discrete ordinal variable resembles a nominal variable, except that the M states of the 

ordinal value are ordered in a meaningful sequence. Ordinal variables are very useful for registering 

subjective assessments of qualities that cannot be measured objectively . For example, professional 

ranks are often enumerated in a sequential order, such as assistant, associate, and full. A continuous 

ordinal variable looks like a set of continuous data of an unknown scale; that is , the relative ordering of 

the values is essential but their actual magnitude is not. For example the relative ranking in a particular 

sport(e.g., gold ,silver,bronze) is often more essential than the actual values of a particular measure. 

ordinal variables may also be obtained from the discretisation of interval-scaled quantities by splitting 

the value range into a finite number of classes. 

The values of an ordinal variable can be mapped to ranks.For example,suppose that an ordinal variable 

has Mf states. These ordered  states define the ranking 1,....,Mf 

 



                  " How are ordinal variables handled?" The treatment of ordinal variables is , quite similar to 

that of interval-scaled variables when computing the dissimilarity between objects. Suppose that is a 

variable from a set of ordinal variables describing n objects. The dissimilarity computation with respect 

to  involves teh following steps. 

 

1.  The value of f for the ith objet is xif, and has Mf ordered states, representing the ranking 1,....,Mf 

Replace each Xif , by its corresponding rank, 

 

2. Since each ordinal variable can have a different number if states, it is often necessary to map the 

range of each variable onto[0.0,1.0] so that each variable has equal weight. This can be acheived by 

replacing the rand rid of the ith object in the fth variable by 

                             

 

                               zif =rif-1/mf-1 

3.Dissimilarity can then be computed using any of the distance 

 

 

20.9 Ratio-Scaled Variables  

             

              A  ratio-scaled variable makes a positive measurement on a nonlinear scale,such as an 

exponential scale ,approximately following the formula 

                                               

                                Ae pow Bt or Ae pow -Bt 

 



  where A and B are positive constraints. Typical  examples include the growth of a bacteria 

population,or the decay of a radioactive element. 

 

   "How can I compute the dissimilarity between objects described by ratio-scaled variables?" There are 

three methods to handle ratio-scaled variables for computing the dissimilarity between objects. 

 

•  Treat ratio-scaled variables like interval-scaled variables.This ,however, is not usually a good 

choice since it is likely that the scale may be distorted. 

•  Apply logarithmic transformation to a ratio-scaled variable having values for object(by using the 

formulae -yif=log(xif). The yif values can be treated as interval-valued. Notice that for some 

ratio-scaled variables.log-log or other transformations may be applied.depending on the 

definition and application. 

• treat xif as continuous ordinal data and treat their ranks as interval-valued. 

 

  

          The latter two methods are the most effective, although the choice of method used may be 

dependent on the given application. 

 

20.10  Variables of mixed Types 

 

                      We discussed how to compute the dissimilarity between objects described by variables of 

the same type, where these types may be either interval-scaled,symmetric binary , asymmetric 

binary,nominal,ordinal,or ratio-scaled.However,in many real databases, a mixture of variable types 

describes objects. In general ,a database can contain all of the sixvariable types listed above. 

 

          "so , how can we compute the dissimilarity between objects of mixed variable types?" One 



approach is to group each kind of variable together ,performing a separate cluser analysis for each 

variable type.This is feasible if these analyses derive compatible results. However, in real applications,it 

is unlikely that a separate cluster 

analysis per variable type will generate compatible results. 

   

               A more preferable approach  is to process all variable types together,performing a single cluster 

analysis.One such technique combines the different variables into a single dissimilarity matrix.bringing 

all of the meaningful variables onto a common scale of the inteval [0,0,1,0]. 

 

20.11 Review questions 

 

 

1.  What Is Cluster Analysis? 

 

2. Types of Data in cluster Analysis 

 

3 Explain about  Interval-scaled Variables  

 

4 Discuss about  Binary Variables  

 

5 Discuss about  Nominal,Ordinal, and ratio-scaled Variables 
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