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Clustering

15-381 Artificial Intelligence

Henry Lin

Modified from excellent slides of Eamonn Keogh, Ziv Bar-Joseph, and Andrew Moore

• Organizing data into clusters

such that there is

• high intra-cluster similarity

• low inter-cluster similarity

•Informally, finding natural 

groupings among objects.

•Why do we want to do that?

•Any REAL application?

What is Clustering?What is Clustering?
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Example: clusty

Example: clustering genes

• Microarrays measures the activities 

of all genes in different conditions

• Clustering genes provide a lot of 

information about the genes

• An early “killer application” in this 

area

– The most cited (7,812) paper in PNAS!
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Why clustering?

• Organizing data into clusters shows internal 

structure of the data

– Ex. Clusty and clustering genes above

• Sometimes the partitioning is the goal

– Ex. Market segmentation

• Prepare for other AI techniques

– Ex. Summarize news (cluster and then find centroid)

• Techniques for clustering is useful in knowledge 

discovery in data

– Ex. Underlying rules, reoccurring patterns, topics, etc.

Outline

• Motivation

• Distance measure

• Hierarchical clustering

• Partitional clustering

– K-means

– Gaussian Mixture Models

– Number of clusters
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What is a natural grouping among these objects?What is a natural grouping among these objects?

School EmployeesSimpson's Family MalesFemales

Clustering is subjectiveClustering is subjective

What is a natural grouping among these objects?What is a natural grouping among these objects?
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What is Similarity?What is Similarity?
The quality or state of being similar; likeness; resemblance; as, a similarity of features.

Similarity is hard 

to define, but… 

“We know it when 

we see it”

The real meaning 

of similarity is a 

philosophical 

question. We will 

take a more 

pragmatic 

approach.  

Webster's Dictionary

Defining Distance MeasuresDefining Distance Measures
Definition: Let O1 and O2 be two objects from the 

universe of possible objects. The distance (dissimilarity) 

between O1 and O2 is a real number denoted by D(O1,O2)

0.23 3 342.7

gene2
gene1
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What properties should a distance measure have?What properties should a distance measure have?

• D(A,B) = D(B,A) Symmetry 

• D(A,B) = 0 iif A = B Constancy of Self-Similarity

• D(A,B) ≥ 0 Positivity

• D(A,B) ≤ D(A,C) + D(B,C) Triangular Inequality

3

d('', '') = 0 d(s, '') = d('', d('', '') = 0 d(s, '') = d('', d('', '') = 0 d(s, '') = d('', d('', '') = 0 d(s, '') = d('', s) = |s| s) = |s| s) = |s| s) = |s| -------- i.e. length i.e. length i.e. length i.e. length of s d(s1+ch1, of s d(s1+ch1, of s d(s1+ch1, of s d(s1+ch1, s2+ch2) = min( d(s1, s2+ch2) = min( d(s1, s2+ch2) = min( d(s1, s2+ch2) = min( d(s1, s2) + if ch1=ch2 then s2) + if ch1=ch2 then s2) + if ch1=ch2 then s2) + if ch1=ch2 then 0 else 1 fi, d(s1+ch1, 0 else 1 fi, d(s1+ch1, 0 else 1 fi, d(s1+ch1, 0 else 1 fi, d(s1+ch1, s2) + 1, d(s1, s2) + 1, d(s1, s2) + 1, d(s1, s2) + 1, d(s1, ssss2+ch2) 2+ch2) 2+ch2) 2+ch2) + 1 ) + 1 ) + 1 ) + 1 ) Inside these black boxes: 

some function on two variables 

(might be simple or very 

complex)

gene2gene1

Outline

• Motivation

• Distance measure

• Hierarchical clustering

• Partitional clustering

– K-means

– Gaussian Mixture Models

– Number of clusters
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Two Types of ClusteringTwo Types of Clustering

HierarchicalHierarchical

• Partitional algorithms: Construct various partitions and then 

evaluate them by some criterion (we will see an example called BIRCH)

• Hierarchical algorithms: Create a hierarchical decomposition of 

the set of objects using some criterion

PartitionalPartitional

Desirable Properties of a Clustering AlgorithmDesirable Properties of a Clustering Algorithm

• Scalability (in terms of both time and space)

• Ability to deal with different data types 

• Minimal requirements for domain knowledge to 

determine input parameters

• Able to deal with noise and outliers

• Insensitive to order of input records

• Incorporation of user-specified constraints

• Interpretability and usability
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A Useful Tool for Summarizing Similarity MeasurementsA Useful Tool for Summarizing Similarity Measurements

In order to better appreciate and evaluate the examples given in the 

early part of this talk, we will now introduce the dendrogram.

Root

Internal Branch

Terminal Branch

Leaf

Internal Node

Root

Internal Branch

Terminal Branch

Leaf

Internal Node

The similarity between two objects in a 

dendrogram is represented as the height of 

the lowest internal node they share.

Business & Economy

B2B Finance Shopping Jobs

Aerospace Agriculture… Banking Bonds… Animals Apparel Career Workspace 

Note that hierarchies are 

commonly used to 

organize information, for 

example in a web portal.

Yahoo’s hierarchy is 

manually created, we will 

focus on automatic 

creation of hierarchies in 

data mining.
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We can look at the dendrogram to determine the “correct” number of 

clusters. In this case, the two highly separated subtrees are highly 

suggestive of two clusters. (Things are rarely this clear cut, unfortunately)

Outlier

One potential use of a dendrogram is to detect outliersOne potential use of a dendrogram is to detect outliers

The single isolated branch is suggestive of a 

data point that is very different to all others
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(How-to) Hierarchical Clustering

The number of dendrograms with n

leafs  = (2n -3)!/[(2(n -2)) (n -2)!]

Number Number of Possible

of Leafs Dendrograms 

2 1

3 3

4 15

5 105

... …

10 34,459,425

Since we cannot test all possible trees 

we will have to heuristic search of all 

possible trees. We could do this..

Bottom-Up (agglomerative): Starting 

with each item in its own cluster, find 

the best pair to merge into a new cluster. 

Repeat until all clusters are fused 

together. 

Top-Down (divisive): Starting with all 

the data in a single cluster, consider 

every possible way to divide the cluster 

into two. Choose the best division and 

recursively operate on both sides.

0 8 8 7 7

0 2 4 4

0 3 3

0 1

0

D(  ,  ) = 8

D(  ,  ) = 1

We begin with a distance 

matrix which contains the 

distances between every pair 

of objects in our database.
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BottomBottom--Up (Up (agglomerativeagglomerative):):
Starting with each item in its own 

cluster, find the best pair to merge into 

a new cluster. Repeat until all clusters 

are fused together. 

…

Consider all 

possible 

merges…

Choose 

the best

BottomBottom--Up (Up (agglomerativeagglomerative):):
Starting with each item in its own 

cluster, find the best pair to merge into 

a new cluster. Repeat until all clusters 

are fused together. 

…

Consider all 

possible 

merges…

Choose 

the best

Consider all 

possible 

merges… …

Choose 

the best
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BottomBottom--Up (Up (agglomerativeagglomerative):):
Starting with each item in its own 

cluster, find the best pair to merge into 

a new cluster. Repeat until all clusters 

are fused together. 

…

Consider all 

possible 

merges…

Choose 

the best

Consider all 

possible 

merges… …

Choose 

the best

Consider all 

possible 

merges…

Choose 

the best…

BottomBottom--Up (Up (agglomerativeagglomerative):):
Starting with each item in its own 

cluster, find the best pair to merge into 

a new cluster. Repeat until all clusters 

are fused together. 

…

Consider all 

possible 

merges…

Choose 

the best

Consider all 

possible 

merges… …

Choose 

the best

Consider all 

possible 

merges…

Choose 

the best…
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Similarity criteria: Single Link

• cluster similarity = similarity of two 
most similar members

- Potentially 
long and skinny 
clusters

Hierarchical: Complete Link
• cluster similarity = similarity of two least

similar members

+ tight clusters
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Hierarchical: Average Link
• cluster similarity = average similarity of 

all pairs

the most widely 

used similarity 

measure

Robust against 

noise

29  2  6 11  9 17 10 13 24 25 26 20 22 30 27  1  3  8  4 12  5 14 23 15 16 18 19 21 28  7

1

2

3

4

5

6

7

Average linkage

Single linkage
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Summary of Hierarchal Clustering MethodsSummary of Hierarchal Clustering Methods

• No need to specify the number of clusters in 

advance. 

• Hierarchical structure maps nicely onto human 

intuition for some domains

• They do not scale well: time complexity of at least 

O(n2), where n is the number of total objects.

• Like any heuristic search algorithms, local optima 

are a problem.

• Interpretation of results is (very) subjective. 

Partitional ClusteringPartitional Clustering

• Nonhierarchical, each instance is placed in 

exactly one of K non-overlapping clusters.

• Since only one set of clusters is output, the user 

normally has to input the desired number of 

clusters K.
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5

0 1 2 3 4 5

KK--means Clustering: Initializationmeans Clustering: Initialization

Decide K, and initialize K centers (randomly)

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

KK--means Clustering: Iteration 1means Clustering: Iteration 1
Assign all objects to the nearest center.

Move a center to the mean of its members.

k1

k2

k3
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KK--means Clustering: Iteration 2means Clustering: Iteration 2
After moving centers, re-assign the objects…

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

KK--means Clustering: Iteration 2means Clustering: Iteration 2

k1

k2

k3

After moving centers, re-assign the objects to nearest centers.

Move a center to the mean of its new members.
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0

1

2

3

4

5

0 1 2 3 4 5

KK--means Clustering: Finished!means Clustering: Finished!
Re-assign and move centers, until …

no objects changed membership.

k1

k2
k3

Algorithm k-means

1. Decide on a value for K, the number of clusters.

2. Initialize the K cluster centers (randomly, if 

necessary).

3. Decide the class memberships of the N objects by 

assigning them to the nearest cluster center.

4. Re-estimate the K cluster centers, by assuming the 

memberships found above are correct.

5. Repeat 3 and 4 until none of the N objects changed 

membership in the last iteration.
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Why K-means Works
• What is a good partition?

• High intra-cluster similarity

• K-means optimizes 
– the average distance to members of 

the same cluster

– which is twice the total distance to 
centers, also called squared error
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Comments on Comments on KK--MeansMeans
• Strength

– Simple, easy to implement and debug

– Intuitive objective function: optimizes intra-cluster similarity

– Relatively efficient: O(tkn), where n is # objects, k is # clusters, 
and t  is # iterations. Normally, k, t << n.

• Weakness
– Applicable only when mean is defined, then what about 

categorical data?

– Often terminates at a local optimum. Initialization is important.

– Need to specify K, the number of clusters, in advance

– Unable to handle noisy data and outliers

– Not suitable to discover clusters with non-convex shapes

• Summary
– Assign members based on current centers

– Re-estimate centers based on current assignment
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Outline

• Motivation

• Distance measure

• Hierarchical clustering

• Partitional clustering

– K-means

– Gaussian Mixture Models

– Number of clusters

Gaussian Mixture Models

• Gaussian

– ex. height of one population

• Gaussian Mixture

– ex. height of two population
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Gaussian Mixture Models

• Mixture of Multivariate 

Gaussian

– ex. y-axis is blood pressure 

and x-axis is age

( ) , ( | ) ( ; , )i i iP C k P x C i xω ϕ µ= = = = Σ

• Decide the number of clusters, K

• Initialize parameters (randomly)

• E-step: assign probabilistic membership

• M-step: re-estimate parameters based on 

probabilistic membership

• Repeat until change in parameters are 

smaller than a threshold

GMM+EM = “Soft K-means”

See R&N for details



22

Iteration 1

The cluster 

means are 

randomly 

assigned 
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Iteration 2

Iteration 5
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Iteration 25

Strength of Gaussian Mixture Models

• Interpretability: learns a generative model of each cluster

– you can generate new data based on the learned model

• Relatively efficient: O(tkn), where n is # objects, k is # 
clusters, and t  is # iterations. Normally, k, t << n.

• Intuitive (?) objective function: optimizes data likelihood

• Extensible to other mixture models for other data types 

– e.g. mixture of multinomial for categorical data 

– maximization instead of mean

– sensitivity to noise and outliers depend on the distribution
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Weakness of Gaussian Mixture Models

• Often terminates at a local optimum. Initialization 
is important.

• Need to specify K, the number of clusters, in 
advance

• Not suitable to discover clusters with non-convex 
shapes

• Summary

– To learn Gaussian mixture, assign probabilistic 
membership based on current parameters, and re-
estimate parameters based on current membership

Clustering methods: Comparison

Hierarchical K-means GMM

Running 

time

naively, O(N3) fastest (each 

iteration is 

linear)

fast (each 

iteration is 

linear)

Assumptions requires a 

similarity / 

distance measure

strong 

assumptions

strongest 

assumptions

Input 

parameters

none K (number of 

clusters)

K (number of 

clusters)

Clusters subjective (only a 

tree is returned)

exactly K 

clusters

exactly K 

clusters
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Outline

• Motivation

• Distance measure

• Hierarchical clustering

• Partitional clustering

– K-means

– Gaussian Mixture Models

– Number of clusters

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

How can we tell the How can we tell the rightright number of clusters?number of clusters?

In general, this is a unsolved problem. However there are many 

approximate methods. In the next few slides we will see an example.
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1 2 3 4 5 6 7 8 9 10

When k = 1, the objective function is 873.0

1 2 3 4 5 6 7 8 9 10

When k = 2, the objective function is 173.1
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1 2 3 4 5 6 7 8 9 10

When k = 3, the objective function is 133.6

0.00E+00

1.00E+02
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8.00E+02

9.00E+02

1.00E+03

1 2 3 4 5 6

We can plot the objective function values for k equals 1 to 6…

The abrupt change at k = 2, is highly suggestive of two clusters 

in the data. This technique for determining the number of 

clusters is known as “knee finding” or “elbow finding”.

Note that the results are not always as clear cut as in this toy example
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What you should know

• Why is clustering useful

• What are the different types of clustering 
algorithms

• What are the assumptions we are making for each, 
and what can we get from them

• Unsolved issues: number of clusters, initialization, 
etc.

Acknowledgement: modified from excellent slides of Eamonn Keogh, Ziv 
Bar-Joseph, Andrew Moore, and others.


