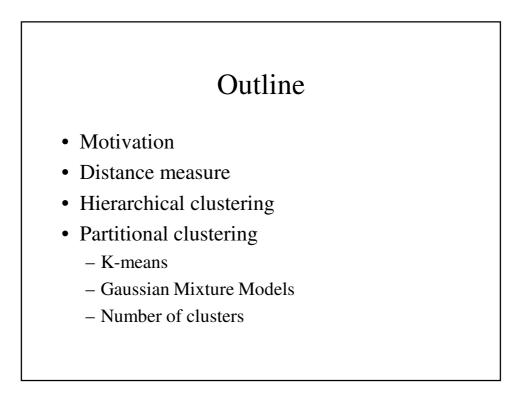
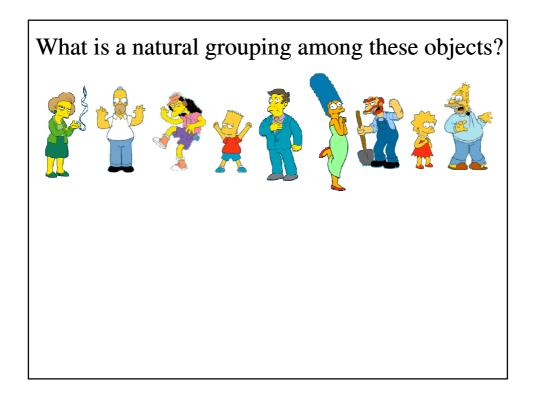
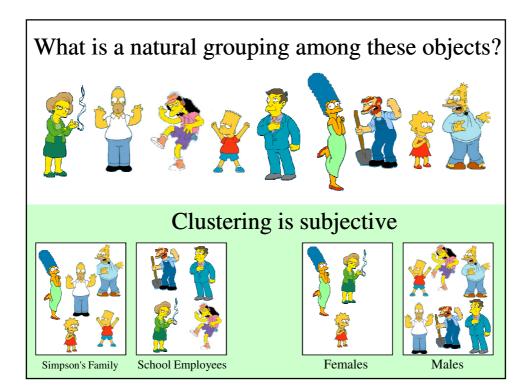


Why clustering?

- Organizing data into clusters shows internal structure of the data
 - Ex. Clusty and clustering genes above
- Sometimes the partitioning is the goal
 - Ex. Market segmentation
- Prepare for other AI techniques
 - Ex. Summarize news (cluster and then find centroid)
- Techniques for clustering is useful in knowledge discovery in data
 - Ex. Underlying rules, reoccurring patterns, topics, etc.





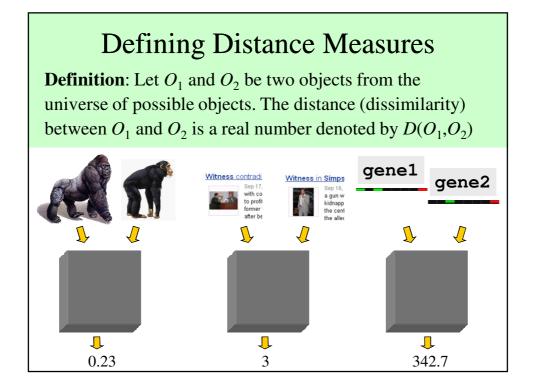


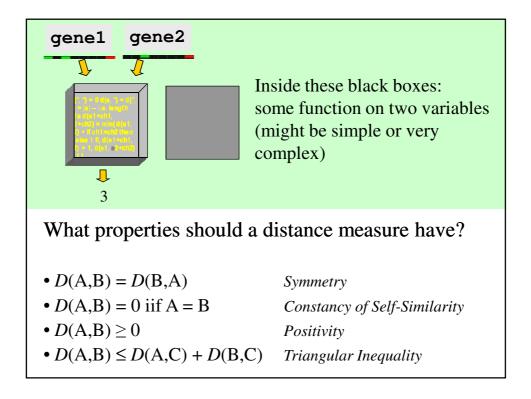
What is Similarity?

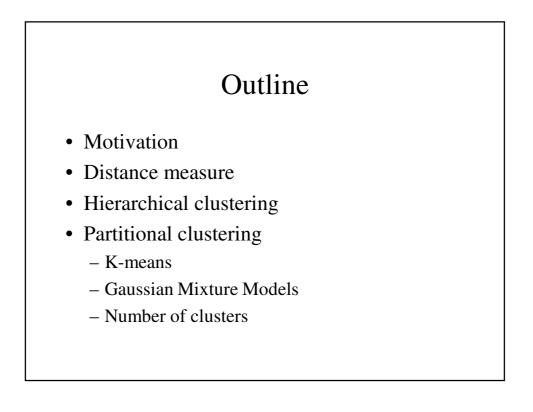
The quality or state of being similar; likeness; resemblance; as, a similarity of features. Webster's Dictionary

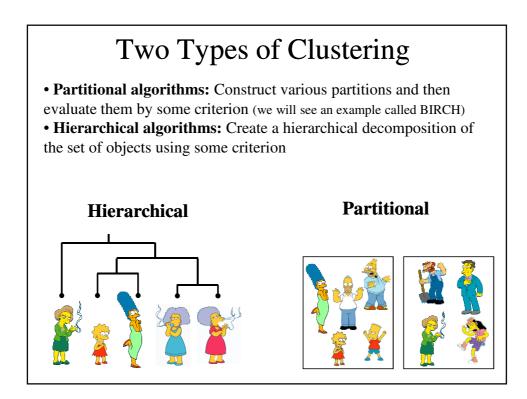
Similarity is hard to define, but... *"We know it when we see it"*

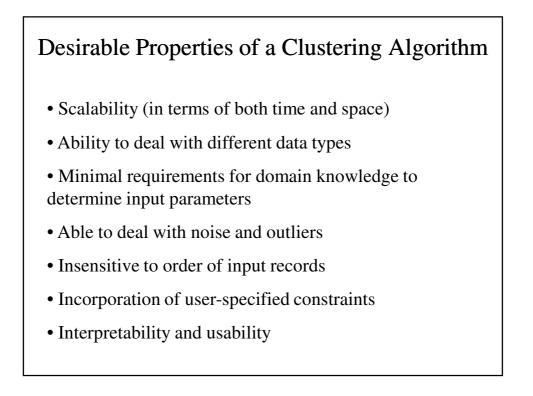
The real meaning of similarity is a philosophical question. We will take a more pragmatic approach.

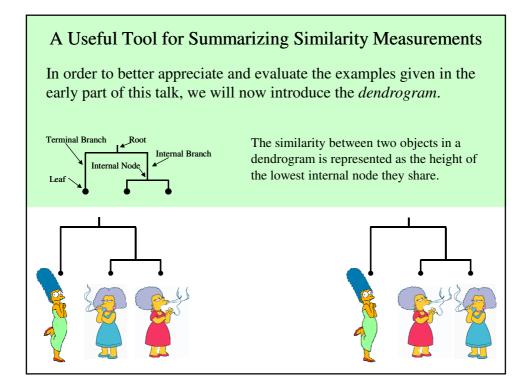


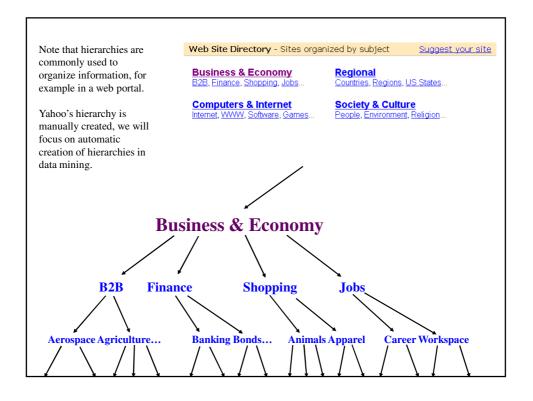


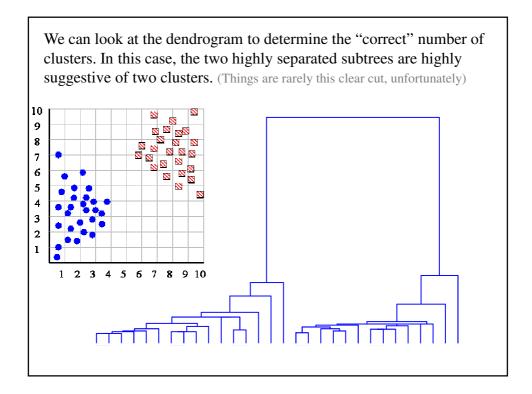


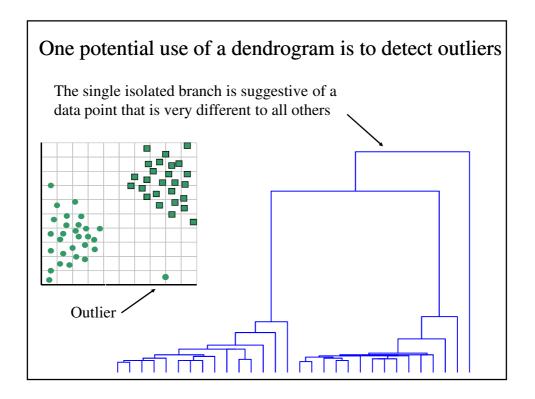




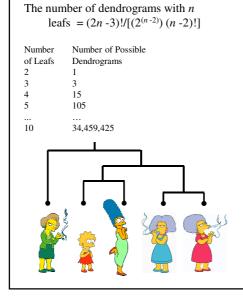








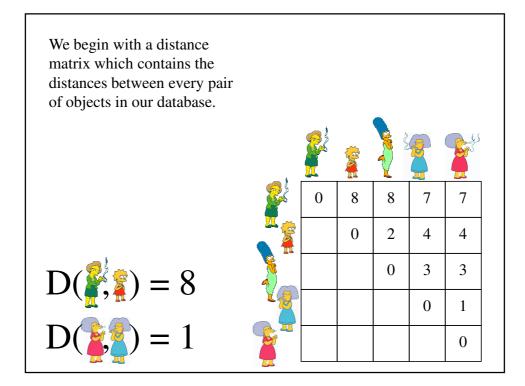
(How-to) Hierarchical Clustering

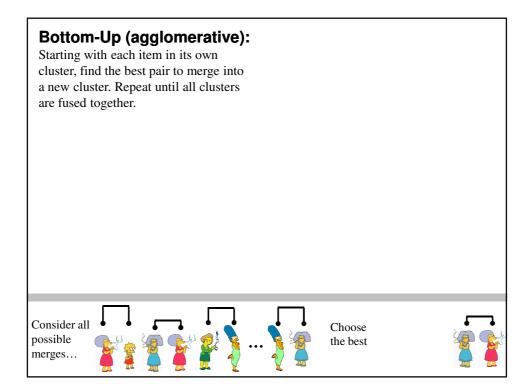


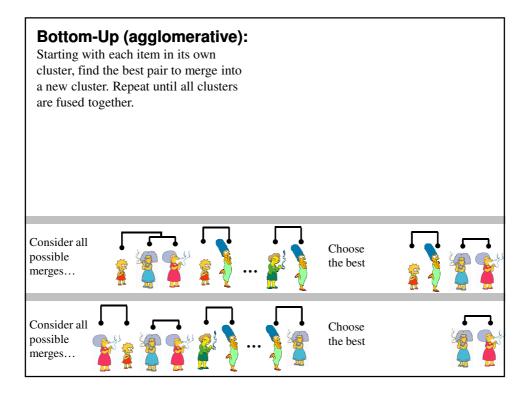
Since we cannot test all possible trees we will have to heuristic search of all possible trees. We could do this..

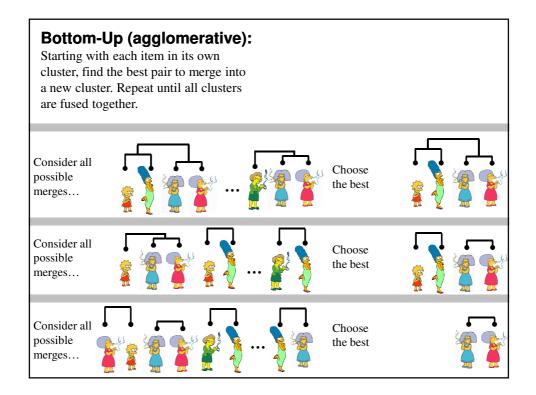
Bottom-Up (agglomerative): Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

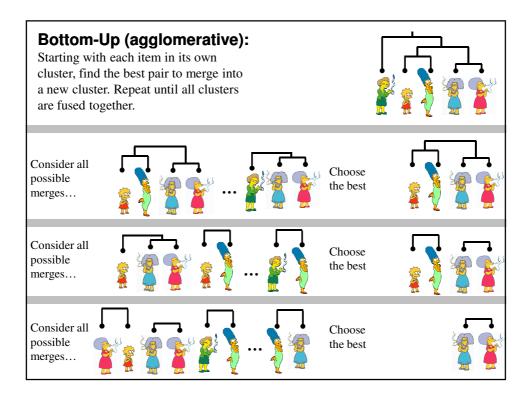
Top-Down (divisive): Starting with all the data in a single cluster, consider every possible way to divide the cluster into two. Choose the best division and recursively operate on both sides.

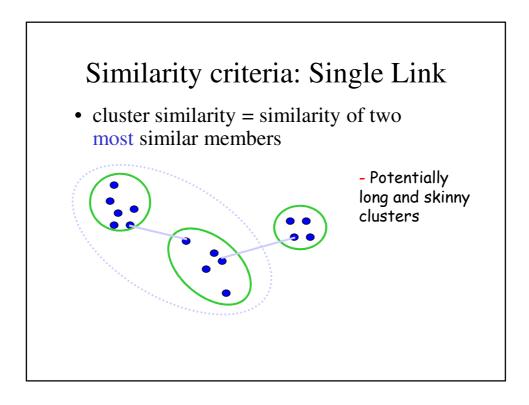


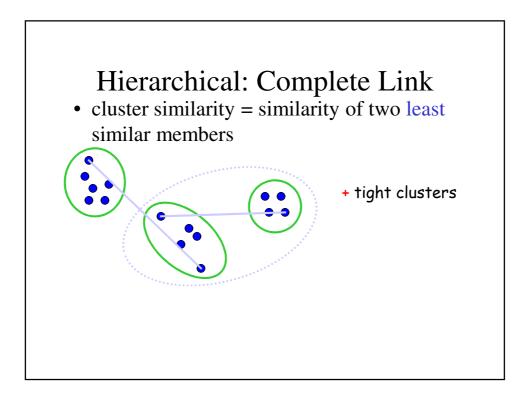


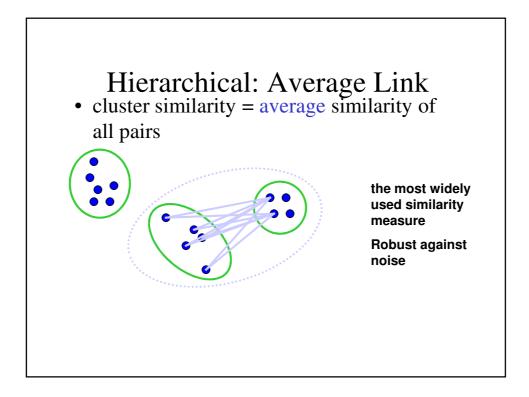


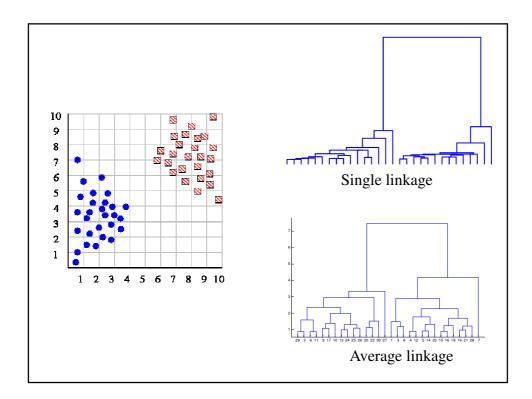












Summary of Hierarchal Clustering Methods

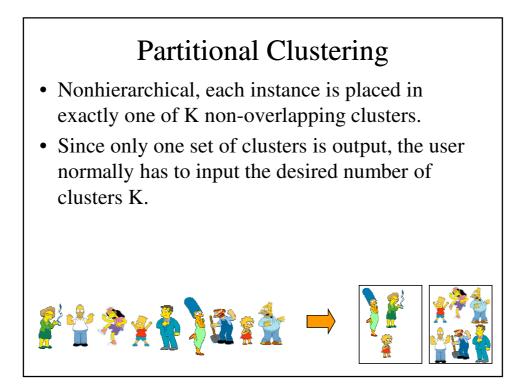
• No need to specify the number of clusters in advance.

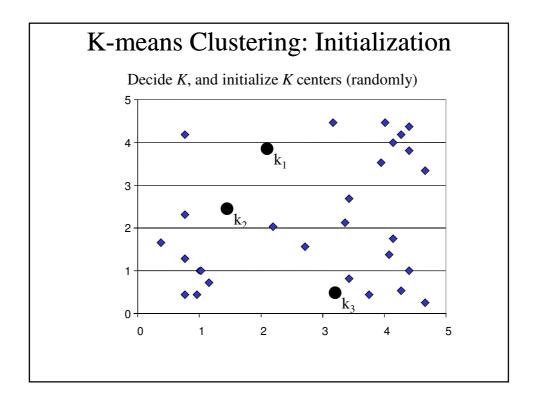
• Hierarchical structure maps nicely onto human intuition for some domains

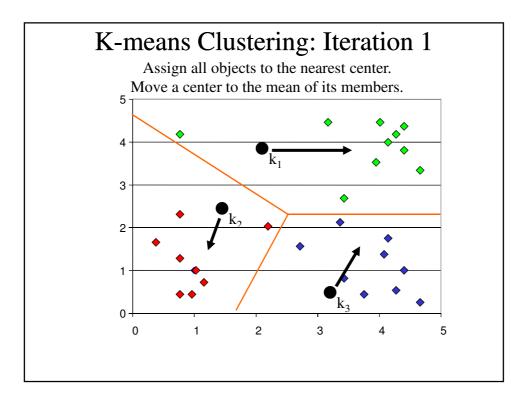
• They do not scale well: time complexity of at least $O(n^2)$, where *n* is the number of total objects.

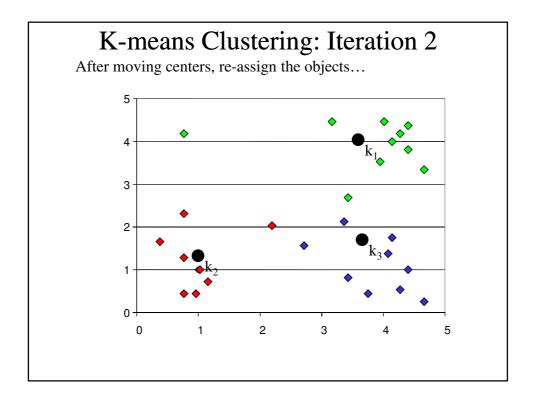
• Like any heuristic search algorithms, local optima are a problem.

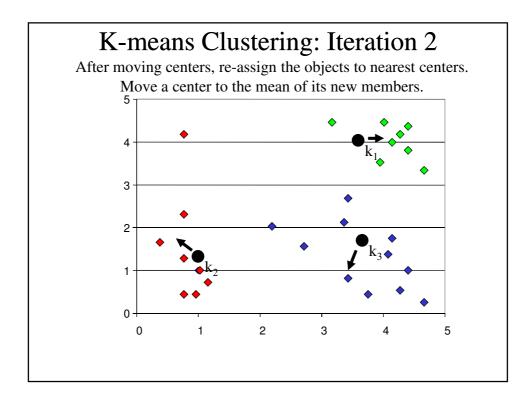
• Interpretation of results is (very) subjective.

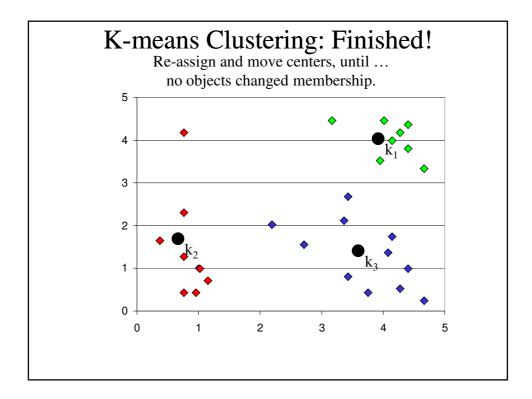












Algorithm k-means

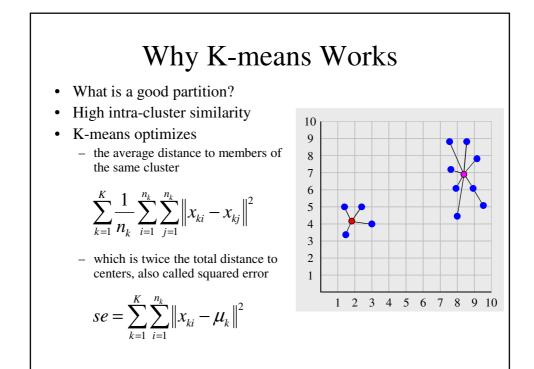
1. Decide on a value for *K*, the number of clusters.

2. Initialize the *K* cluster centers (randomly, if necessary).

3. Decide the class memberships of the N objects by assigning them to the nearest cluster center.

4. Re-estimate the *K* cluster centers, by assuming the memberships found above are correct.

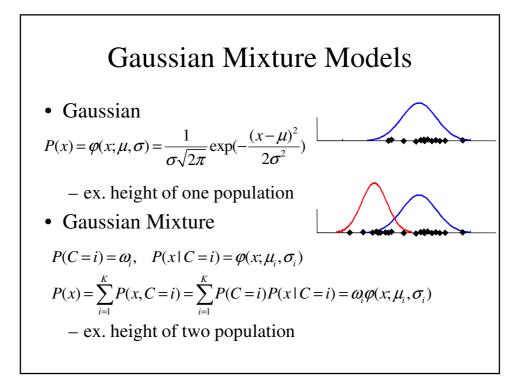
5. Repeat 3 and 4 until none of the *N* objects changed membership in the last iteration.

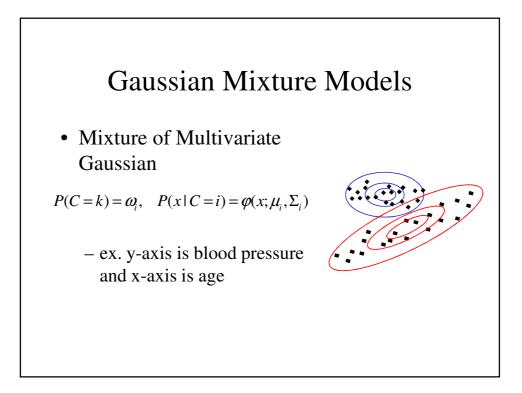


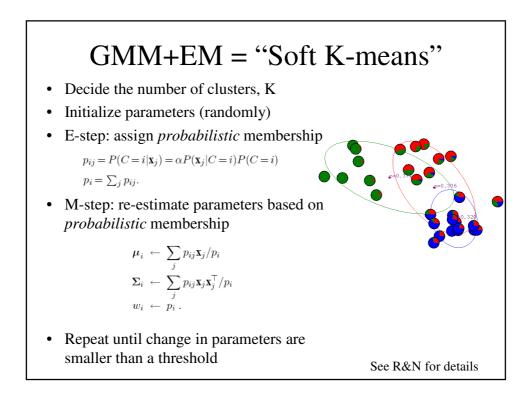
•	Strength
	– Simple, easy to implement and debug
	– Intuitive objective function: optimizes intra-cluster similarity
	 Relatively efficient: O(tkn), where n is # objects, k is # clusters and t is # iterations. Normally, k, t << n.
•	Weakness
	 Applicable only when <i>mean</i> is defined, then what about categorical data?
	- Often terminates at a local optimum. Initialization is important
	– Need to specify <i>K</i> , the <i>number</i> of clusters, in advance
	– Unable to handle noisy data and <i>outliers</i>
	- Not suitable to discover clusters with non-convex shapes
•	Summary
	– Assign members based on current centers
	- Re-estimate centers based on current assignment

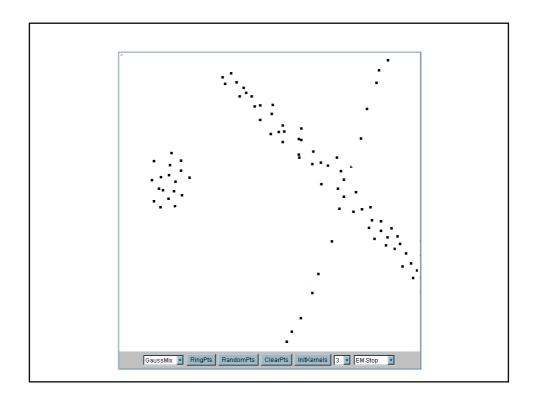
Outline

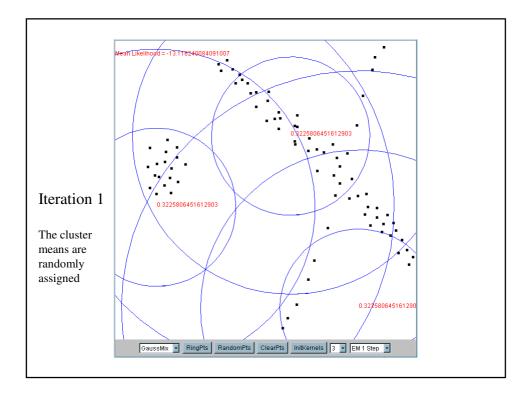
- Motivation
- Distance measure
- Hierarchical clustering
- Partitional clustering
 - K-means
 - Gaussian Mixture Models
 - Number of clusters

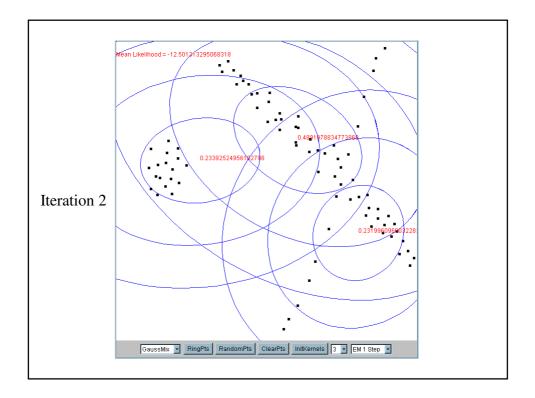


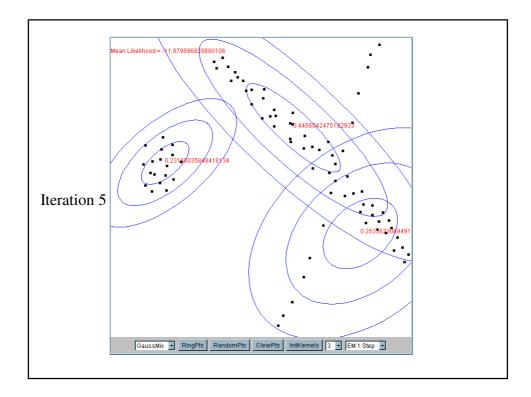


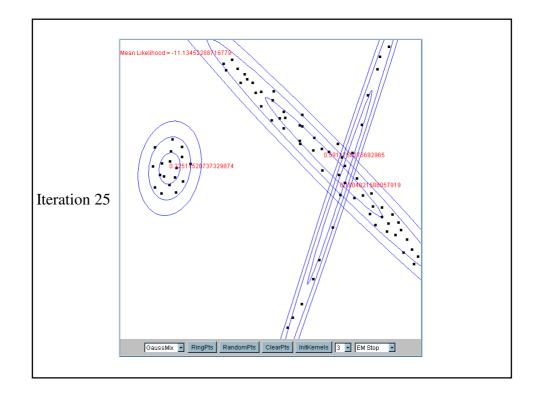


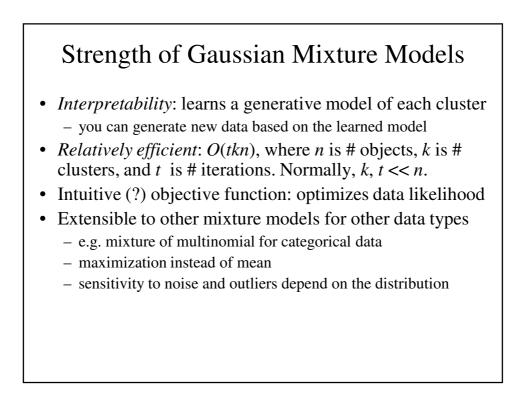












Weakness of Gaussian Mixture Models

- Often terminates at a *local optimum*. Initialization is important.
- Need to specify *K*, the *number* of clusters, in advance
- Not suitable to discover clusters with *non-convex shapes*
- Summary
 - To learn Gaussian mixture, assign probabilistic membership based on current parameters, and reestimate parameters based on current membership

	Hierarchical	K-means	GMM
Running time	naively, $O(N^3)$	fastest (each iteration is linear)	fast (each iteration is linear)
Assumptions	requires a similarity / distance measure	strong assumptions	strongest assumptions
Input parameters	none	<i>K</i> (number of clusters)	<i>K</i> (number of clusters)
Clusters	subjective (only a tree is returned)	exactly <i>K</i> clusters	exactly <i>K</i> clusters

Outline

- Motivation
- Distance measure
- Hierarchical clustering
- Partitional clustering
 - K-means
 - Gaussian Mixture Models
 - Number of clusters

