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Major Difficulties 

• The presence of large variability in cluster 
geometric shapes, and 

• The number of clusters cannot always be 
known a priori. Different distance 
measures lead to different types of 
clusters (e.g. compact hyperspheres, 
compact hyperellipsoids, lines, shells, etc.). 



Cluster Validity (1)

• In fact, if cluster analysis is to make a significant 
contribution to engineering applications, much more 
attention must be paid to cluster validity issues that are 
concerned with determining the optimal number of 
clusters and checking the quality of clustering results. 

• Many different indices of cluster validity have been 
proposed, such as the Bezdek’s partition coefficient, the 
Dunn’s separation index, the Xie-Beni’s separation index, 
Davies-Bouldin’s index, and the Gath-Geva’s index, etc. 

• Most of these validity indices usually assume tacitly that 
data points having constant density to the clusters. 
However, it is not sure of the real problems. 



Indices of Cluster Validity (1)

• Cluster validation refers to procedures that 
evaluate the clustering results in a quantitative 
and objective function.

• Some kinds of validity indices are usually 
adopted to measure the adequacy of a structure 
recovered through cluster analysis. 

• Determining the correct number of clusters in a 
data set has been, by far, the most common 
application of cluster validity. 



Indices of Cluster Validity (2)

• In general, indices of cluster validity fall into one of three 
categories. 

• Some validity indices measure partition validity by 
evaluating the properties of the crisp structure imposed 
on the data by the clustering algorithm. 

• In the case of fuzzy clustering algorithms, some validity 
indices such as partition coefficient and classification 
entropy use only the information of fuzzy membership 
grades to evaluate clustering results. 

• The third category consists of validity indices that make 
use of not only the fuzzy membership grades but also 
the structure of the data. 



Dunn’s index

• The Dunn’s index is defined as 

where 

d is a distance function and Aj is the set whose elements are the data points 
assigned to the ith cluster. 
The main drawback with direct implementation of Dunn’s index is 
computational since calculating  becomes computationally very expensive as 
c and n increase. 
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Davies-Bouldin’s Index (1)

• Its major difference from Dunn’s index is that it considers the 
average case by using the average error of each class. 

• This index is a function of the ratio of the sum of within-cluster 
scatter to between-cluster separation, it uses both the clusters and 
their sample means. 

• First, define the within ith cluster scatter and the between ith and 
jth cluster as
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Davies-Bouldin Index (2)
• where      is the ith cluster center,            , q is an integer and q,t

can be selected independently of each other.      is the number of 
elements in  Ai

• Next, define 

• Finally, the Davies-Bouldin index can be 
defined as 
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Partition Coefficient (PC) 

• Bezdek designed the partition coefficient (PC) to 
measure the amount of “overlap” between clusters. 

• He defined the partition coefficient (PC) as follows.

• where  uij is the membership of 
data point j in cluster i.  

• Disadvantages of the partition coefficient are its 
monotonic decreasing with c and the lack of direct 
connection to some property of the data themselves. 
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Classification Entropy (CE) 

• Classification entropy is defined as 

• Bezdek proved the relation                   
for all probabilistic cluster partitions c. 

• It is basically a measure for the fuzziness 
of the cluster partition only, which is 
similar to the partition coefficient. 
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Separation index (S) 

• The validity index S is based on the objective function J by 
determining the average number of data and the square of the 
minimum distances of the cluster centers. The separation index S is 
defined as 

• where         is the minimum Euclidean distance between 
cluster centers. 

• The more separate the clusters, the larger          , and 
the smaller S. Thus, the smallest S indeed indicates a 
valid optimal partition. 
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Fuzzy Hypervolume (FHV) 

• It can be argued that a good partition should 
yield a high value of fuzzy partition density and 
a low value of fuzzy hypervolume. Gath and 
Geva defined the volume of the clusters in a 
fuzzy partition as follows. 

• where Fi denotes the ith fuzzy covariance 
matrix.
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CS Index 

• The CS index is then defined as 
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Four Spherical Clusters (1)

Fig. 3(a). The data set in example 1: 
It contains of a mixture of compact 
spherical and ellipsoidal clusters. 

Fig. 3(b). The final clustering result achieved by 
the FCM algorithm at 

4=c
.



Four Spherical Clusters (2)

1.2461.201.0311.3161.1320.9670.7710.8741.058CS

0.9010.9751.0750.9290.9270.8510.7801.0471.124FHV

0.1840.1870.2500.2550.3510.1760.0800.1650.162S

1.1121.0791.0370.9350.8470.7190.5690.5460.365CE

0.5110.5220.5410.5600.5980.6510.7200.7030.779PC

0.9160.8690.8000.9720.9550.7670.6240.6180.800DB

0.0200.0120.0240.0290.0130.0080.0780.0380.236DI

1098765432c



A Mixture of Spherical and 
Ellipsoidal Clusters (1)

Fig. 4(b). The final clustering result achieved by 
the Gustafson-Kessel algorithm at 

.

Fig. 4.(a) The data set in example 2:
It contains five compact clusters. 



A Mixture of Spherical and 
Ellipsoidal Clusters (2)

1.7901.4761.1561.3691.0990.8661.0351.5171.758CS

1.0831.0551.0731.0611.0440.9211.2531.5701.858FHV

0.7960.3150.2960.4970.3830.0820.1530.2690.398S

0.9110.8340.7710.6880.5920.4830.4980.4080.287CE

0.5910.6250.6540.6890.7310.7800.7550.7830.835PC

1.0860.9600.8210.9240.7440.5010.7150.9581.265DB

0.0080.0040.0060.0040.0120.0220.0150.0160.034DI

1098765432c



Five Clusters (1)

Fig. 5(a). The data set in example 3: 
It contains distributed on five clusters 

Fig. 5(b). The final clustering result achieved
by the FCM algorithm at 

.



Five Clusters (2)

0.6820.5520.5660.5940.7820.3960.4280.5891.022CS

0.7510.6530.7250.7540.9330.9251.0721.7251.957FHV

0.8730.1240.1690.2040.3100.0630.0390.0740.090S

0.7730.7220.7000.6210.6310.4800.3620.3400.222CE

0.6500.6690.6710.6840.6760.7860.8380.8270.866PC

0.6930.5950.6730.7310.8450.3540.3160.4350.591DB

0.0780.0920.0400.0400.0470.5880.1050.0690.062DI

1098765432c


