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Major Difficulties

* The presence of large variability in cluster
geometric shapes, and

* The number of clusters cannot always be
known a priori. Different distance
measures lead to different types of
clusters (e.g. compact hyperspheres,
compact hyperellipsoids, lines, shells, etc.).



Cluster Validity (1)

* |In fact, if cluster analysis is to make a significant
contribution to engineering applications, much more
attention must be paid to cluster validity issues that are
concerned with determining the optimal number of
clusters and checking the quality of clustering results.

* Many different indices of cluster validity have been
proposed, such as the Bezdek’s partition coefficient, the
Dunn’s separation index, the Xie-Beni’'s separation index,
Davies-Bouldin’s index, and the Gath-Geva’s index, etc.

* Most of these validity indices usually assume tacitly that
data points having constant density to the clusters.
However, it is not sure of the real problems.



Indices of Cluster Validity (1)

 Cluster validation refers to procedures that
evaluate the clustering results in a quantitative
and objective function.

e Some kinds of validity indices are usually
adopted to measure the adequacy of a structure
recovered through cluster analysis.

* Determining the correct number of clusters in a
data set has been, by far, the most common
application of cluster validity.



Indices of Cluster Validity (2)

In general, indices of cluster validity fall into one of three
categories.

Some validity indices measure partition validity by
evaluating the properties of the crisp structure imposed
on the data by the clustering algorithm.

In the case of fuzzy clustering algorithms, some validity
Indices such as partition coefficient and classification
entropy use only the information of fuzzy membership
grades to evaluate clustering results.

The third category consists of validity indices that make
use of not only the fuzzy membership grades but also
the structure of the data.



Dunn’s index

e The Dunn’s index is defined as

DI (c) = min min s niq;?A,&))},

g .

S(A,A)=minld(x,,x,)|x € A,x, €A |

where

A(A) =maxid(x,, X ) [ X, X, € A |

d is a distance function and A is the set whose elements are the data points

assigned to the #th cluster.
The main drawback with direct implementation of Dunn’s index Is
computational since calculating becomes computationally very expensive as

¢ and 77 increase.



Davies-Bouldin’s Index (1)

* Its major difference from Dunn’s index is that it considers the
average case by using the average error of each class.

* This index is a function of the ratio of the sum of within-cluster
scatter to between-cluster separation, it uses both the clusters and

their sample means.
e First, define the within ith cluster scatter and the between ith and

Jth cluster as
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Davies-Bouldin Index (2)

e where V; is the th cluster center, 0,t=1 qis an integer and q,t

can be selected independently of each other. | A |is the number of
elements in A,

e Next, define

S +S
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* Finally, the Davies-Bouldin index can be
defined as

DB() = <Y R4



Partition Coefficient (PC)

Bezdek designed the partition coefficient (PC) to
measure the amount of “overlap” between clusters.

He defined the partition coefficient (PC) as follows.
1 c N
PC(c) = NZZ(UU )2
i=1 j=1
where uj; (i=12,..,c;j=12,.,N)is the membership of
data point /in cluster .

Disadvantages of the partition coefficient are its
monotonic decreasing with ¢ and the lack of direct
connection to some property of the data themselves.



Classification Entropy (CE)

* Classification entropy Is defined as
CE(c) = _%ZC:ZN:UU Iog(uij)

* Bezdek proved the relation ,_; pci) <ce(o
for all probabilistic cluster partitions c.

* |t Is basically a measure for the fuzziness
of the cluster partition only, which Is
similar to the partition coefficient.



Separation index (S)

The validity index S is based on the objective function J by
determining the average number of data and the square of the
minimum distances of the cluster centers. The separation index S is

defined as N N
Zzuijzd(l(j _\_/i)2 Zzuijzd(l(j _\_/i)2

S(C) __i= j=.1 = i=1 j=1 ;
N rr_]{n {d(\_/m _\_/n)} N >k(dmin)

and mzn

where d_.. is the minimum Euclidean distance between
cluster centers.

The more separate the clusters, the larger (d_, )% and
the smaller S. Thus, the smallest Sindeed indicates a
valid optimal partition.



Fuzzy Hypervolume (FHV)

* |t can be argued that a good partition should
yield a high value of fuzzy partition density and
a low value of fuzzy hypervolume. Gath anc
Geva defined the volume of the clusters in a
fuzzy partition as follows.

FHV (c) = j/det(ﬁ)

* where £, denotes the #th fuzzy covariance
matrix.




CS Index

e The CS index Is then defined as

CS(0) = Z{IA 2 e Xk)}}z{l’* T Xk)}}
C;{jgclhlli{d(\_/i ,\_/,-)}} g{m’ln {d(\_/i ,\_/,-)}}



Four Spherical Clusters (1)
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Fig. 3(a). The data set in example 1:
It contains of a mixture of compact
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Fig. 3(b). Thefinal clustering result achieved by
the FCM algorithm at




Four Spherical Clusters (2)

C 2 3 4 5 6 7 8 9 10
DI 0.236 0.038 0.078 0.008 0.013 0.029 0.024 0.012 0.020
DB 0.800 0.618 0.624 0.767 0.955 0.972 0.800 0.869 0.916
PC 0.779 0.703 0.720 0.651 0.598 0.560 0.541 0.522 0511
CE 0.365 0.546 0.569 0.719 0.847 0.935 1.037 1.079 1112
S 0.162 0.165 0.080 0.176 0.351 0.255 0.250 0.187 0.184
FHV 1.124 1.047 0.780 0.851 0.927 0.929 1.075 0.975 0.901
CS 1.058 0.874 0.771 0.967 1132 1.316 1.031 1.20 1.246




A Mixture of Spherical and
Ellipsoidal Clusters (1)
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Fig. 4.(a) The data set in example 2: Fig. 4(b). Thefinal clustering result achieved by
It contains five compact clusters. the Gustafson-K essel algorithm at




A Mixture of Spherical and

Ellipsoidal Clusters (2)

C 2 3 4 5 6 7 8 9 10
DI 0.034 0.016 0.015 0.022 0.012 0.004 0.006 0.004 0.008
DB 1.265 0.958 0.715 0.501 0.744 0.924 0.821 0.960 1.086
PC 0.835 0.783 0.755 0.780 0.731 0.689 0.654 0.625 0.591
CE 0.287 0.408 0.498 0.483 0.592 0.688 0.771 0.834 0.911

S 0.398 0.269 0.153 0.082 0.383 0.497 0.296 0.315 0.796

FHV 1.858 1.570 1.253 0.921 1.044 1.061 1.073 1.055 1.083

CS 1.758 1.517 1.035 0.866 1.099 1.369 1.156 1.476 1.790




Five Clusters (1)
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Fig. 5(a). The data set in example 3:
It contains distributed on five clusters

Fig. 5(b). Thefinal clustering result achieved

by the FCM algorithm at




Five Clusters (2)

C 2 3 4 5 6 7 8 9 10
DI 0.062 0.069 0.105 0.588 0.047 0.040 0.040 0.092 0.078
DB 0.591 0.435 0.316 0.354 0.845 0.731 0.673 0.595 0.693
PC 0.866 0.827 0.838 0.786 0.676 0.684 0.671 0.669 0.650
CE 0.222 0.340 0.362 0.480 0.631 0.621 0.700 0.722 0.773
S 0.090 0.074 0.039 0.063 0.310 0.204 0.169 0.124 0.873
FHV 1.957 1.725 1.072 0.925 0.933 0.754 0.725 0.653 0.751
CS 1.022 0.589 0.428 0.396 0.782 0.594 0.566 0.552 0.682




